Multiobjective Algorithms with Resampling for Portfolio Optimization

نویسندگان

  • Sandra García-Rodríguez
  • David Quintana
  • Inés María Galván
  • Pedro Isasi Viñuela
چکیده

Constrained financial portfolio optimization is a challenging domain where the use of multiobjective evolutionary algorithms has been thriving over the last few years. One of the major issues related to this problem is the dependence of the results on a set of parameters. Given the nature of financial prediction, these figures are often inaccurate, which results in unreliable estimates for the efficient frontier. In this paper we introduce a resampling mechanism that deals with uncertainty in the parameters and results in efficient frontiers that are more robust. We test this idea on real data using four multiobjective optimization algorithms (NSGA-II, GDE3, SMPSO and SPEA2). The results show that resampling significantly increases the reliability of the resulting portfolios.

منابع مشابه

Time-stamped resampling for robust evolutionary portfolio optimization

Traditional mean-variance financial portfolio optimization is based on two sets of parameters, estimates for the asset returns and the variance-covariance matrix. The allocations resulting from both traditional methods and heuristics are very dependent on these values. Given the unreliability of these forecasts, the expected risk and return for the portfolios in the efficient frontier often dif...

متن کامل

A nonlinear multi objective model for the product portfolio optimization: An integer programming

Optimization of the product portfolio has been recognized as a critical problem in industry, management, economy and so on. It aims at the selection of an optimal mix of the products to offer in the target market. As a probability function, reliability is an essential objective of the problem which linear models often fail to evaluate it. Here, we develop a multiobjective integer nonlinear cons...

متن کامل

Portfolio Optimization Using SPEA2 with Resampling

The subject of financial portfolio optimization under real-world constraints is a difficult problem that can be tackled using multiobjective evolutionary algorithms. One of the most problematic issues is the dependence of the results on the estimates for a set of parameters, that is, the robustness of solutions. These estimates are often inaccurate and this may result on solutions that, in theo...

متن کامل

Combining RMT-based filtering with time-stamped resampling for robust portfolio optimization

Finding the optimal weights for a set of financial assets is a difficult task. The mix of real world constrains and the uncertainty derived from the fact that process is based on estimates for parameters that likely to be inaccurate, often result in poor results. This paper suggests that a combination of a filtering mechanism based on random matrix theory with time-stamped resampled evolutionar...

متن کامل

Stock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach)

Portfolio selection process is a subject focused by many researchers. Various criteria involved in this process have undergone alterations over time, necessitating the use of appropriate investment decision support tools. An optimization approach used in different sciences is using meta-heuristic algorithms. In the present study, using Water Cycle Algorithm (WCA), a model was introduced for sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Computing and Informatics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013